Warning: file_get_contents(https://raw.githubusercontent.com/Den1xxx/Filemanager/master/languages/ru.json): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 107

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 234

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 235

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 236

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 237

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 238

Warning: Cannot modify header information - headers already sent by (output started at /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php:1) in /home/zoomride2022/public_html/myzoomride.com/wp-includes/certificates/system.php on line 239
U i_ _@sdZddlmZddlZddlZddlZddlZddlZddgZddZ ddZ ej j Z ej jZed ejejBZGd ddejZdS) z+Fraction, infinite-precision, real numbers.DecimalNFractiongcdcCsfddl}|dtdt|tkr2t|kr\nn&|p<|dkrPt|| St||St||S)zCalculate the Greatest Common Divisor of a and b. Unless b==0, the result will have the same sign as b (so that when b is divided by it, the result comes out positive). rNz6fractions.gcd() is deprecated. Use math.gcd() instead.)warningswarnDeprecationWarningtypeintmathr_gcd)abrr(/opt/python38/lib/python3.8/fractions.pyrs   cCs|r|||}}q|SNrrrrrrr sr aC \A\s* # optional whitespace at the start, then (?P[-+]?) # an optional sign, then (?=\d|\.\d) # lookahead for digit or .digit (?P\d*) # numerator (possibly empty) (?: # followed by (?:/(?P\d+))? # an optional denominator | # or (?:\.(?P\d*))? # an optional fractional part (?:E(?P[-+]?\d+))? # and optional exponent ) \s*\Z # and optional whitespace to finish cseZdZdZdZdRddfdd Zed d Zed d Zd dZ dSddZ e ddZ e ddZ ddZddZddZddZeeej\ZZddZeeej\ZZd d!Zeeej\ZZd"d#Zeeej\Z Z!d$d%Z"ee"ej#\Z$Z%d&d'Z&ee&e'\Z(Z)d(d)Z*ee*ej+\Z,Z-d*d+Z.d,d-Z/d.d/Z0d0d1Z1d2d3Z2d4d5Z3d6d7Z4d8d9Z5dTd:d;Z6dd?Z8d@dAZ9dBdCZ:dDdEZ;dFdGZdLdMZ?dNdOZ@dPdQZAZBS)Ura]This class implements rational numbers. In the two-argument form of the constructor, Fraction(8, 6) will produce a rational number equivalent to 4/3. Both arguments must be Rational. The numerator defaults to 0 and the denominator defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. Fractions can also be constructed from: - numeric strings similar to those accepted by the float constructor (for example, '-2.3' or '1e10') - strings of the form '123/456' - float and Decimal instances - other Rational instances (including integers)  _numerator _denominatorrNT _normalizec sRtt||}|dkrdt|tkr6||_d|_|St|tj rV|j |_|j |_|St|t t frx|\|_|_|St|trZt|}|dkrtd|t|dpd}|d}|rt|}nvd}|d}|rdt|}||t|}||9}|d } | rBt| } | d kr4|d| 9}n|d| 9}|d d krb| }ntd nft|tkrt|krnnn@t|tj rt|tj r|j |j |j |j }}ntd|d krtd||rBt|tkrt|kr(nnt||} |d kr2| } n t||} || }|| }||_||_|S)aConstructs a Rational. Takes a string like '3/2' or '1.5', another Rational instance, a numerator/denominator pair, or a float. Examples -------- >>> Fraction(10, -8) Fraction(-5, 4) >>> Fraction(Fraction(1, 7), 5) Fraction(1, 35) >>> Fraction(Fraction(1, 7), Fraction(2, 3)) Fraction(3, 14) >>> Fraction('314') Fraction(314, 1) >>> Fraction('-35/4') Fraction(-35, 4) >>> Fraction('3.1415') # conversion from numeric string Fraction(6283, 2000) >>> Fraction('-47e-2') # string may include a decimal exponent Fraction(-47, 100) >>> Fraction(1.47) # direct construction from float (exact conversion) Fraction(6620291452234629, 4503599627370496) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(Decimal('1.47')) Fraction(147, 100) Nz Invalid literal for Fraction: %rnum0denomdecimal exprsign-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))superr__new__r r rr isinstancenumbersRational numerator denominatorfloatras_integer_ratiostr_RATIONAL_FORMATmatch ValueErrorgrouplen TypeErrorZeroDivisionErrorr rr ) clsr'r(rselfmrrZscalerg __class__rrr#Tsx            $     $   zFraction.__new__cCsDt|tjr||St|ts8td|j|t|jf||S)zConverts a finite float to a rational number, exactly. Beware that Fraction.from_float(0.3) != Fraction(3, 10). z.%s.from_float() only takes floats, not %r (%s))r$r%Integralr)r1__name__r r*)r3frrr from_floats  zFraction.from_floatcCsVddlm}t|tjr&|t|}n$t||sJtd|j|t|jf|| S)zAConverts a finite Decimal instance to a rational number, exactly.rrz2%s.from_decimal() only takes Decimals, not %r (%s)) rrr$r%r9r r1r:r r*)r3Zdecrrrr from_decimals   zFraction.from_decimalcCs |j|jfS)zReturn the integer ratio as a tuple. Return a tuple of two integers, whose ratio is equal to the Fraction and with a positive denominator. rr4rrrr*szFraction.as_integer_ratio@Bc Cs|dkrtd|j|kr"t|Sd\}}}}|j|j}}||}|||} | |krZq|||||| f\}}}}||||}}q<|||} t|| ||| |} t||} t| |t| |kr| S| SdS)aWClosest Fraction to self with denominator at most max_denominator. >>> Fraction('3.141592653589793').limit_denominator(10) Fraction(22, 7) >>> Fraction('3.141592653589793').limit_denominator(100) Fraction(311, 99) >>> Fraction(4321, 8765).limit_denominator(10000) Fraction(4321, 8765) rz$max_denominator should be at least 1)rrrrN)r.rrrabs) r4Zmax_denominatorZp0Zq0Zp1Zq1ndrZq2kZbound1Zbound2rrrlimit_denominators$      zFraction.limit_denominatorcCs|jSr)rrrrrr'szFraction.numeratorcCs|jSr)rrErrrr(szFraction.denominatorcCsd|jj|j|jfS)z repr(self)z %s(%s, %s))r8r:rrr>rrr__repr__"szFraction.__repr__cCs(|jdkrt|jSd|j|jfSdS)z str(self)rz%s/%sN)rr+rr>rrr__str__'s  zFraction.__str__csTfdd}djd|_j|_fdd}djd|_j|_||fS)aGenerates forward and reverse operators given a purely-rational operator and a function from the operator module. Use this like: __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) In general, we want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. In Fraction, that means that we define __add__ and __radd__ as: def __add__(self, other): # Both types have numerators/denominator attributes, # so do the operation directly if isinstance(other, (int, Fraction)): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) # float and complex don't have those operations, but we # know about those types, so special case them. elif isinstance(other, float): return float(self) + other elif isinstance(other, complex): return complex(self) + other # Let the other type take over. return NotImplemented def __radd__(self, other): # radd handles more types than add because there's # nothing left to fall back to. if isinstance(other, numbers.Rational): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) return NotImplemented There are 5 different cases for a mixed-type addition on Fraction. I'll refer to all of the above code that doesn't refer to Fraction, float, or complex as "boilerplate". 'r' will be an instance of Fraction, which is a subtype of Rational (r : Fraction <: Rational), and b : B <: Complex. The first three involve 'r + b': 1. If B <: Fraction, int, float, or complex, we handle that specially, and all is well. 2. If Fraction falls back to the boilerplate code, and it were to return a value from __add__, we'd miss the possibility that B defines a more intelligent __radd__, so the boilerplate should return NotImplemented from __add__. In particular, we don't handle Rational here, even though we could get an exact answer, in case the other type wants to do something special. 3. If B <: Fraction, Python tries B.__radd__ before Fraction.__add__. This is ok, because it was implemented with knowledge of Fraction, so it can handle those instances before delegating to Real or Complex. The next two situations describe 'b + r'. We assume that b didn't know about Fraction in its implementation, and that it uses similar boilerplate code: 4. If B <: Rational, then __radd_ converts both to the builtin rational type (hey look, that's us) and proceeds. 5. Otherwise, __radd__ tries to find the nearest common base ABC, and fall back to its builtin type. Since this class doesn't subclass a concrete type, there's no implementation to fall back to, so we need to try as hard as possible to return an actual value, or the user will get a TypeError. csPt|ttfr||St|tr0t||St|trHt||StSdSr)r$r rr)complexNotImplementedrfallback_operatormonomorphic_operatorrrforward~s   z-Fraction._operator_fallbacks..forward__csZt|tjr||St|tjr4t|t|St|tjrRt|t|StSdSr)r$r%r&ZRealr)ComplexrHrIrrrJrrreverses    z-Fraction._operator_fallbacks..reverseZ__r)r:__doc__)rLrKrMrQrrJr_operator_fallbacks.sP  zFraction._operator_fallbackscCs,|j|j}}t|j||j|||S)za + br(rr'rrdadbrrr_addsz Fraction._addcCs,|j|j}}t|j||j|||S)za - brTrUrrr_subsz Fraction._subcCst|j|j|j|jS)za * brr'r(rrrr_mulsz Fraction._mulcCst|j|j|j|jS)za / brZrrrr_divs  z Fraction._divcCs|j|j|j|jS)za // br'r(rrrr _floordivszFraction._floordivcCs:|j|j}}t|j|||j\}}|t|||fS)z(a // b, a % b))r(divmodr'r)rrrVrWZdivZn_modrrr_divmodszFraction._divmodcCs,|j|j}}t|j||j|||S)za % brTrUrrr_modsz Fraction._modcCst|tjr|jdkr|j}|dkr>t|j||j|ddS|jdkrft|j| |j| ddSt|j | |j | ddSqt|t|Sn t||SdS)za ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational. rrFrN) r$r%r&r(r'rrrr))rrZpowerrrr__pow__s&       zFraction.__pow__cCs\|jdkr|jdkr||jSt|tjr b)rrgtrrrr__gt__qszFraction.__gt__cCs||tjS)za <= b)rrlerrrr__le__uszFraction.__le__cCs||tjS)za >= b)rrgerrrr__ge__yszFraction.__ge__cCs t|jS)za != 0)boolrrErrr__bool__}szFraction.__bool__cCs|jt|ffSr)r8r+r>rrr __reduce__szFraction.__reduce__cCs t|tkr|S||j|jSrr rr8rrr>rrr__copy__s zFraction.__copy__cCs t|tkr|S||j|jSrr)r4memorrr __deepcopy__s zFraction.__deepcopy__)rN)r?)N)Cr: __module__ __qualname__rR __slots__r# classmethodr<r=r*rDpropertyr'r(rFrGrSrXradd__add____radd__rYsub__sub____rsub__r[mul__mul____rmul__r\truediv __truediv__ __rtruediv__r^floordiv __floordiv__ __rfloordiv__r`r_ __divmod__ __rdivmod__ramod__mod____rmod__rbrcrerfrgrhrirjrorvr|rrrrrrrrr __classcell__rrr7rr<sdm   7  k )rRrrr r%rresys__all__rr hash_infomodulusrsinfrtcompileVERBOSE IGNORECASEr,r&rrrrrs